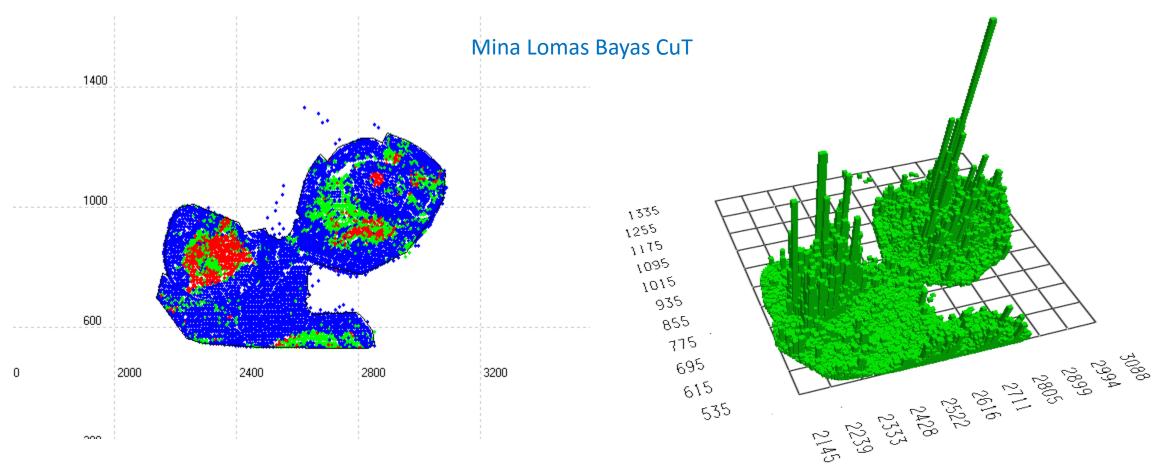
El error de estimación. Aplicación a la Clasificación de Recursos y Reservas

Por

Marco Antonio Alfaro Sironvalle Ingeniero Civil de Minas Doctor en Geoestadística marco.alfaro@vtr.net

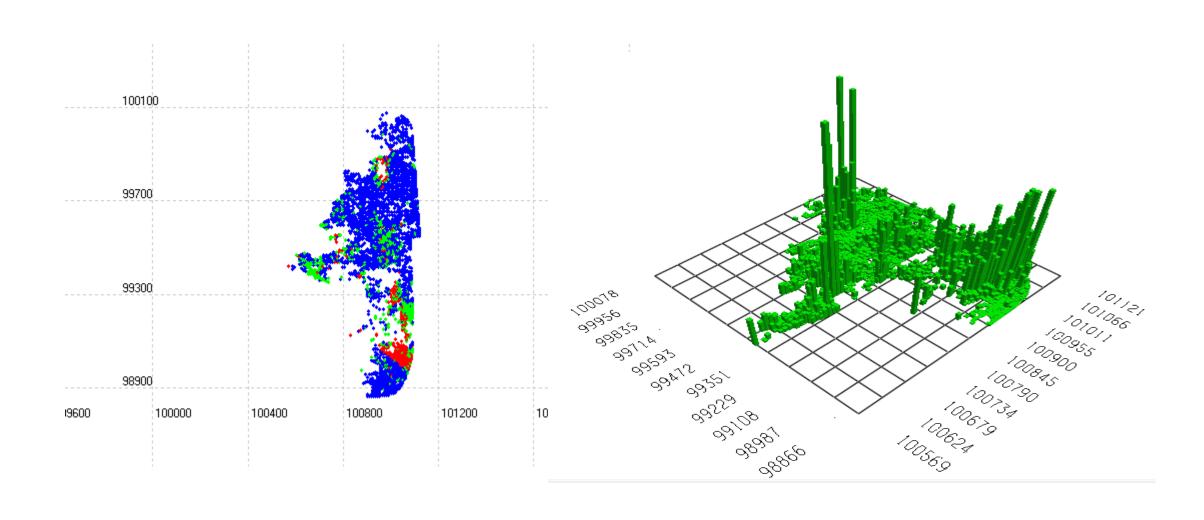
Una cita: Maledetta varianza

¿Dante? ¿Ch. Huijbregts?



Ronald Fisher (1890-1962) usa por primera vez el término "varianza" en 1919 En Geoestadística hay 2 varianzas:

- De dispersión
- De estimación

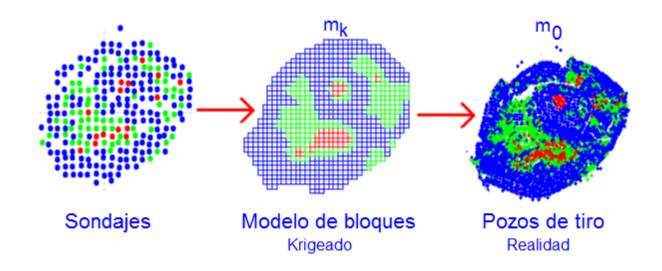

Acerca de la variabilidad de las leyes

En general la variabilidad es decir **la dispersión** de las leyes no es constante dentro de un mismo depósito

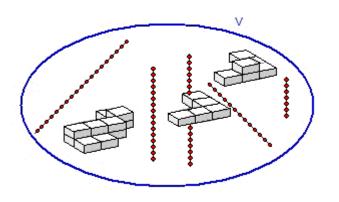


Efecto proporcional de las leyes: a mayor ley media, mayor variabilidad

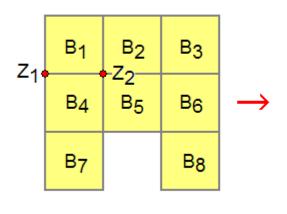
Leyes de Molibdeno (Los Bronces Bco. 3512.5)



Leyes de cobre (El Soldado Bco. 925)


Este efecto proporcional debe ser caracterizado en cada depósito e influye en la clasificación de los recursos

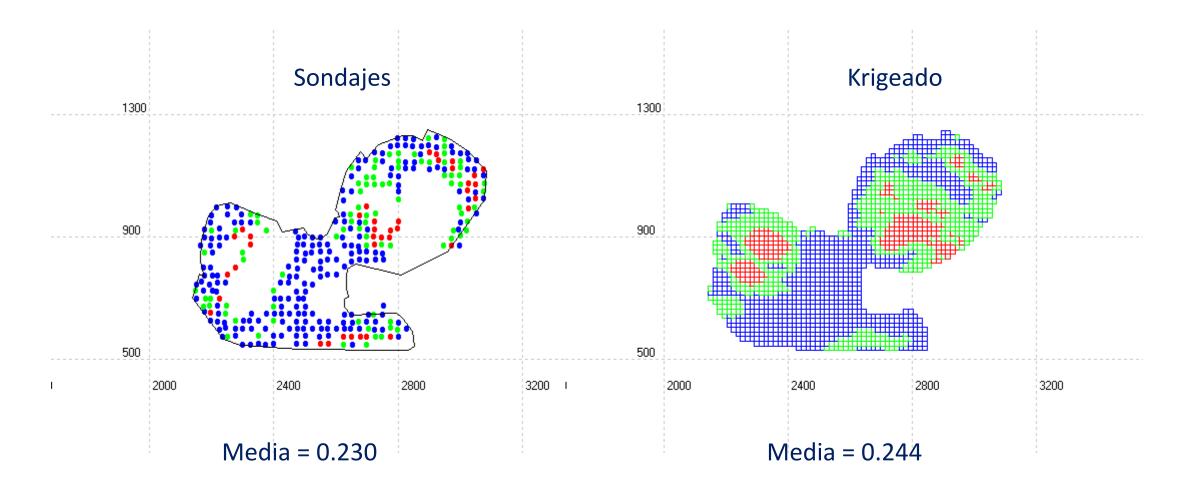
El error de estimación para modelos de bloques



Objetivo: predecir el error mk – mo

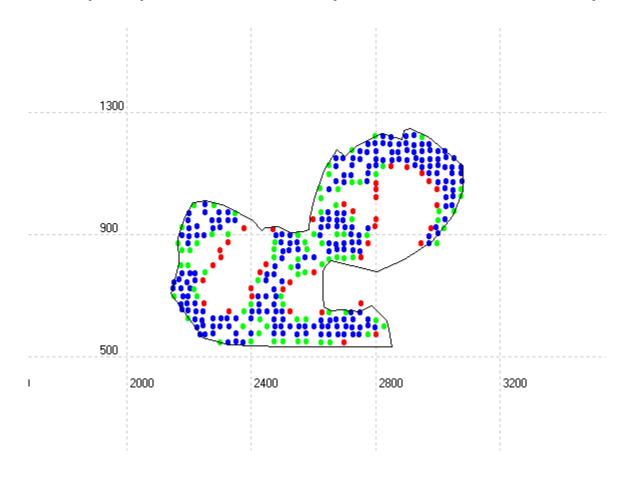
El modelo de bloques puede contener miles de bloques, los cuales se estimaron con miles de compósitos

Ejemplo

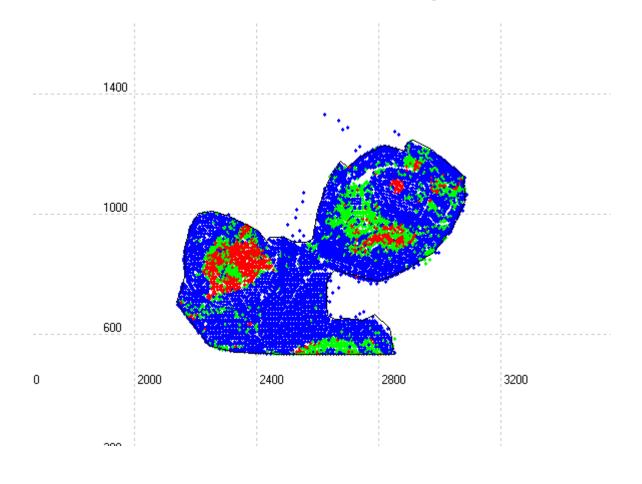

Block	λ_1	λ_2
1	0.5	0.5
2	0.2	8.0
3	0.1	0.9
4	0.5	0.5
5	0.2	8.0
6	0.1	0.9
7	0.5	0.5
8	0.3	0.7
mean	0.3	0.7

El krigeado de la zona amarilla asigna un peso a cada compósito

Para calcular la varianza del error usamos la fórmula fundamental de la geoestadística


$$\begin{split} Z_V &= \sum_{i=1}^N a_i Z_i \\ \sigma_E^2 &= 2 \sum_{i=1}^N a_i \overline{\gamma}(x_i, V) - \frac{1}{V^2} \iint_{V} \gamma(x, y) dx dy - \sum_{i=1}^N \sum_{j=1}^N a_i a_j \gamma(x_i, x_j) \end{split}$$

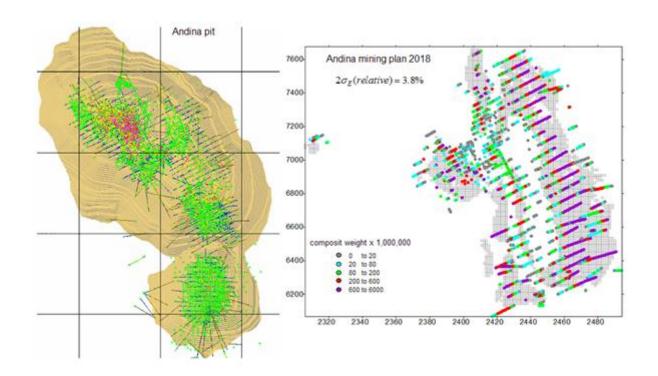
Primero veamos que la Teoría "funciona"


Se corren 2 procesos: Krigeado y varianza

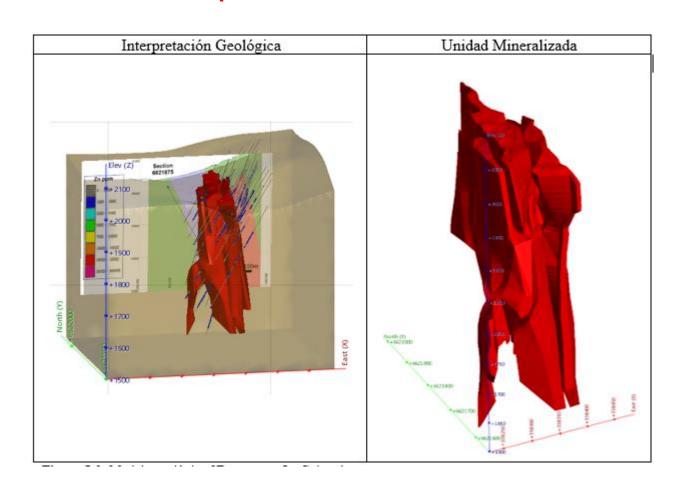
Krigeado proporciona los pesos de los compósitos

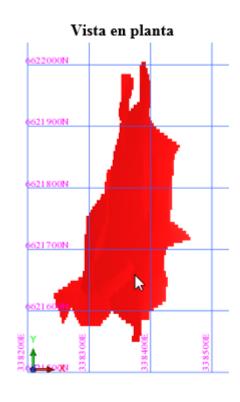
Error de estimación

Error relativo (sigma) = 23.54%



Ley estimada = 0.244Error = ± 0.057 Ley real = 0.300


¡FUNCIONA!

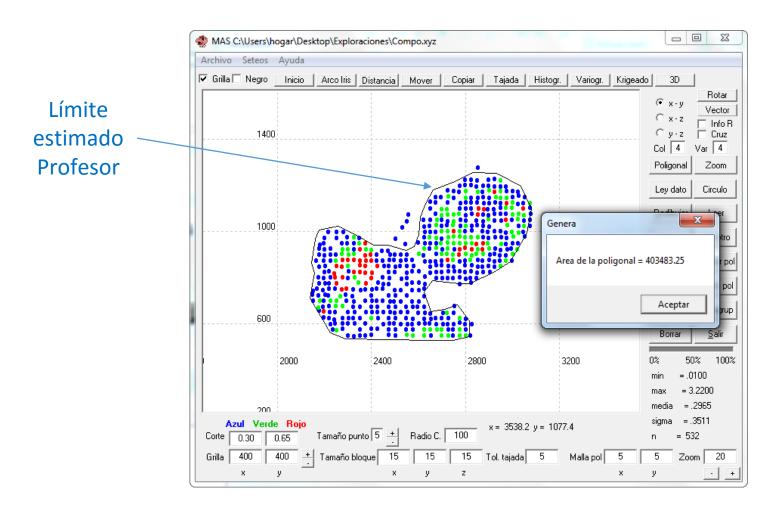

Aplicación: Plan Minero Andina. Año 2018

El error (con 90% de confianza debe ser < 15%

Aplicación: Mina la Colorada

Zinc: media = 0.801 ± 0.050 (6.2% de error) @ 22 Mtons

Aplicación: Plan minero rajo Inca (Salvador)


Resultados de los errores

Error	sigma	total	sigma	CuInf	sigma	CuInd	sigma	CuM	Año
0.68	0.19	0.46	0.26	0.45	0.24	0.49	0.24	0.35	2018
0.24	0.09	0.62	0.12	0.55	0.12	0.55	0.13	0.70	2019
0.23	0.09	0.65	0.23	0.77	0.14	0.55	0.10	0.67	2020
0.36	0.16	0.74	0.18	0.43	0.13	0.55	0.29	1.00	2021
0.16	0.05	0.50	0.09	0.41	0.06	0.50	0.06	0.58	2022
0.11	0.04	0.59	0.08	0.50	0.04	0.54	0.05	0.68	2023
0.08	0.03	0.64	0.05	0.43	0.05	0.59	0.05	0.76	2024
0.19	0.07	0.60	0.09	0.36	0.19	0.68	0.16	0.60	2025
0.10	0.03	0.51	0.03	0.36	0.04	0.56	0.05	0.61	2026
0.13	0.04	0.51	0.05	0.46	0.05	0.50	0.08	0.64	2027
0.11	0.04	0.60	0.05	0.54	0.05	0.62	0.10	0.74	2028
0.12	0.04	0.56	0.10	0.60	0.04	0.52	0.06	0.60	2029
0.08	0.03	0.60	0.04	0.58	0.06	0.59	0.04	0.64	2030

Conclusiones

- Las aplicaciones pueden ser variadas desde la mediana a gran minería
 - Epuede ser un complemento a una clasificación existente
- Existe una metodología para calcular el error de tonelaje basada en los indicadores

El error de tonelaje

Resulta que todas las interpretaciones son diferentes: no hay dos iguales. Las diferencias no son pequeñas

Valores obtenidos para cada estudiante

Desviación estándar = 1,456,088 tons

-	Т	\cap	n	
		U		٠

1	Albornoz Cristobal	15083051
2	Ancaten Briams	13976948
3	Arancibia Esteban	16376949
4	Arancibia Francisca	13424912
5	Ayala Felipe	13988584
6	Barraza Nicolas	16057754
7	Brajovic Manuel	16029000
8	Bravo Juan	14904148
9	Bravo Sebastian	14635508
10	Briceño Bastian	14055611
11	Bustos Cristhian	15799134
12	Carretero Natalia	12780658
13	Caviedes Bastian	14551733
14	Cazo Jean	16088826
15	Chavez Thais	14693949
16	Contreras Whitney	13303780

Tons

17	Correa Javier	14841087
18	Duran Carlos	14108462
19	Figueros Matias	12844543
20	Ibañez Javiera	16376949
21	Ilabaca Matias	13646690
22	Jara Diego	14239324
23	Maturana Esteban	14453350
24	Merino Karime	13730917
25	Mowllo Felipe	14986810
26	Moyano Pablo	15651995
27	Navarro Felipe	15880693
28	Nazar Javiera	15886884
29	Olmos Martin	14183832
30	Onell Nicolas	15720861
31	Osorio Hugo	15005383
32	Perez Danay	13507886
33	Perez Jose	13696302

Tons

34	Puratic Goran	15518916
35	Ramirez Brahiam	13106271
36	Richards Dante	16088608
37	Riquelme Christian	13454638
38	Roco Omara	15011093
39	Rojas Daniel	13439449
40	Rozas Nicolas	13227318
41	Salinas Hernan	13475048
42	San Martin Pia	13459454
43	Soto Valeria	13876317
44	Tobar Boris	14223064
45	Valencia Gabriela	13762874
46	Valencia Juan	15340579
47	Vargas Alexa	13931066
48	Vasquez Javier	14189331
49	Villanueva Lukas	14903623

Observar la importante presencia de mujeres.

Mínimo: 12,780,658 tons.

Máximo: 16,376,949 tons.

Rango: 3,596,291 tons. •

Más de 1 mes de producción

de esta mina

Ahora cada estudiante calcula el valor económico de este banco (dado precio del Cu y costos)

- Mi resultado muestra la gran desigualdad económica que hay en Chile
- Compraría 1196 motos NCR Machinanera
- Compraría 3554 casas de \$ 40,000,000
- 7042 camionetas Ford
- 6418 Jeep Wrangler
- 71900 medias aguas de \$ 2,300,000
- 43620 aranceles de 1 año
- 954 casas en Antofagasta (sobran \$ 177,854,920)
- 1085 Mercedes Benz de \$ 150,000,000
- 65 Lamborginis de \$ 215,250,000
- 14 estadios El Teniente
- Mantener a 594,425 familias de \$ 250,000/mes

Continuación

- 5 Jets privados Dassault Falcon
- 1518 casas de \$ 100,000,000
- 693 Ferraris F12
- 723 Rolls Royce de \$ 310,000,000
- Contraría a Lionel Messi y me sobra plata
- 55 paquetes de viaje en un crucero
- 75,819,035 hamburguesas en Mac Donald más la bebida
- El valor de la carrera de ingeniería de minas cuesta \$21,543,849 => 6820 alumnos
- 68 autos Lycan Sport con valor de \$ 2,096,000,000

Esta es la opinión de nuestros futuros profesionales de la minería. ¿Era la suya cuando estudió?

En Chile hay un total de 11,000 estudiantes de Ingeniería de Minas (2015) En Australia hay 625 iGracias!