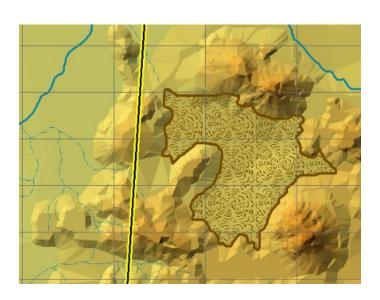


Importancia de los depósitos artificiales en la vida útil de operaciones mineras

Marco Alfaro Sironvalle

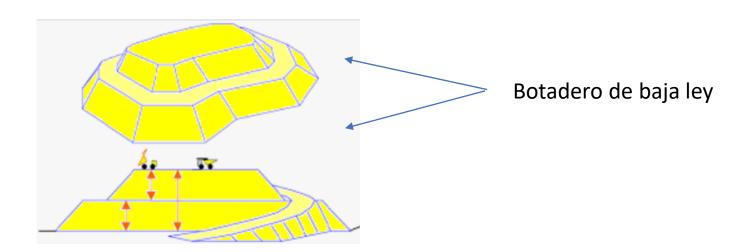
2021


Introducción

En nuestro país tenemos una gran cantidad de depósitos artificiales muchos de los cuales tienen, en la actualidad, un valor económico interesante.

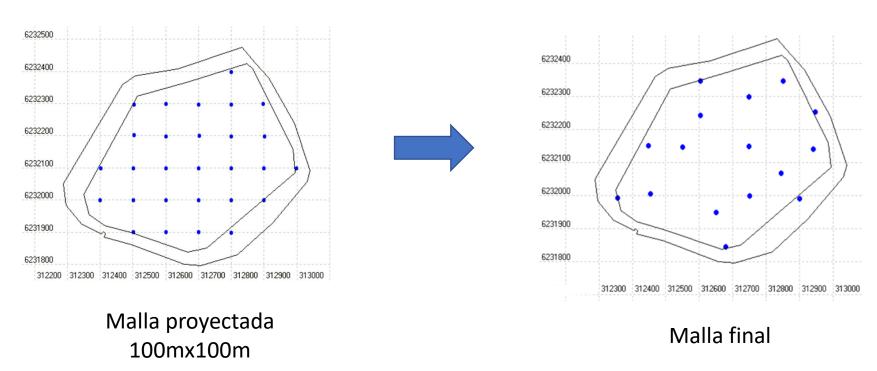
Es necesario disponer de metodologías para el muestreo y la evaluación de estos recursos para luego constituir reservas. En algunos casos habrá que estudiar las leyes de los contaminantes para eliminar pasivos ambientales.

La vida útil está totalmente asociada a una buena estimación de los recursos y su transformación en reservas mineras.

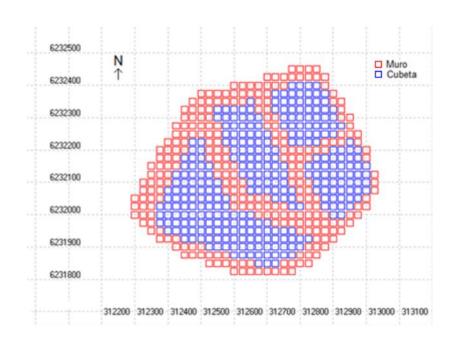


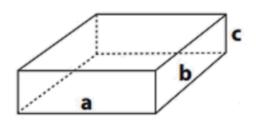
Presentaremos entonces una serie de ejemplos que nos indican la importancia de un buen muestreo minero y de buenas prácticas de estimación de recursos.

Ejemplos: relaves, ripios de lixiviación, escorias de fundición, botaderos de baja ley y otros tanto de minería metálica como no metálica


Pierre Gy

A) Relaves Minera Florida

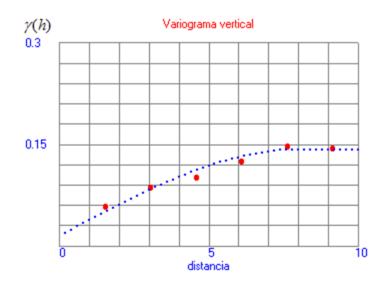

Ejemplo clásico

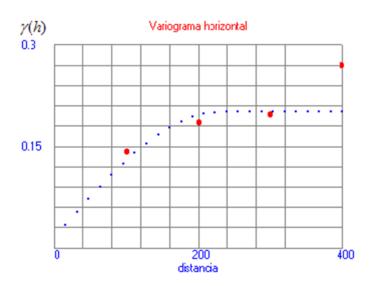


16 sondajes que contienen un total de 133 compósitos de 1.5m Análisis químico = 133 análisis por: Cu, Au, Ag, Zn, Pb Profundidad media = 12.5m Densidad media del tranque = 1.36 ton/m3

Objetivo: construir un modelo de bloques axbxc (25mx25mx3m)

Hay 2 unidades de estimación: MURO y CUBETA

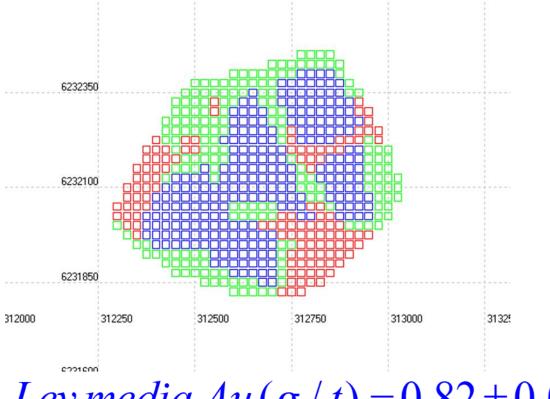




Bloque unitario

Evaluar el tranque por métodos **geoestadísticos** considerando las unidades "Muro" y "Cubeta". Au, Ag

Los variogramas son muy buenos



Permiten calcular la ley de cada bloque asignando error a las estimaciones. Se puede calcular además la ley media de todo el tranque 3D y su error

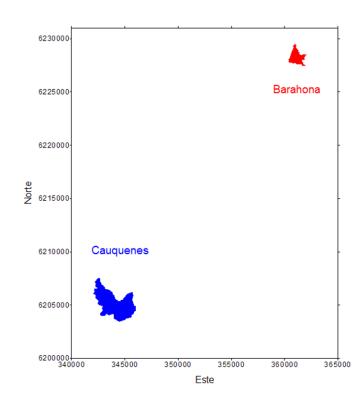
Modelo de bloques estimado (2013)

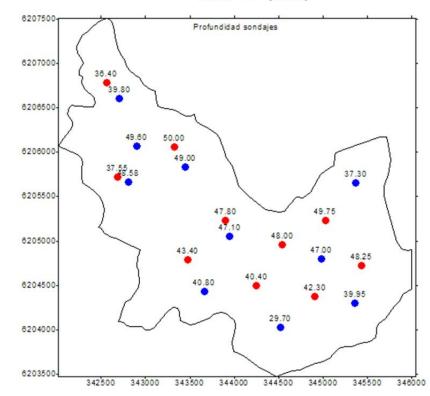
Ley media Au del tranque total

Azul: Au menor que 0.8 Verde: Au entre 0.8 y 1.0 Rojo: Au mayor que 1.0

Ley media $Au(g/t) = 0.82 \pm 0.08$

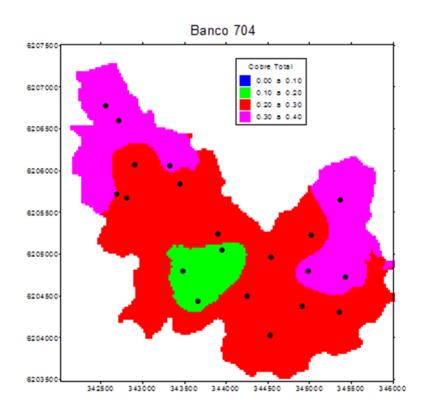
0.74 < m < 0.80


Ley media esperada Au por la empresa (g/t) = 1.15


Ley media real (08:02:2021)

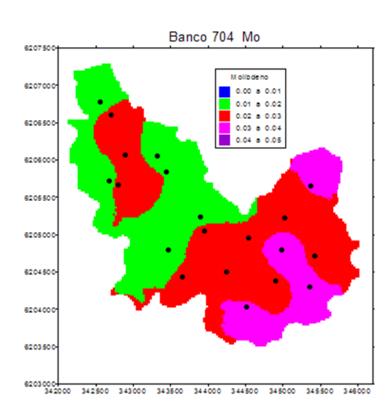
m = 0.76 g/t

Otros tranques: Cauquenes Barahona El Teniente

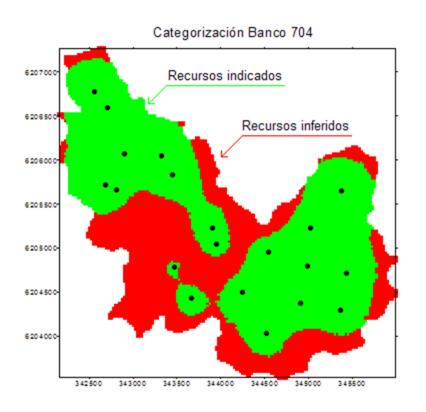

Rojo: SC (1984) Azul: S (1998)

Se descartaron del estudio los primeros 5 metros de los sondajes del año 1984 por presentar grandes diferencias con los del año 1998

Modelo de bloques Cauquenes (25mx25mx5m)

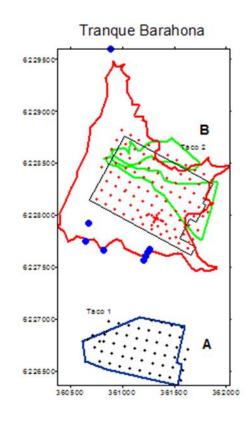

Refleja la forma de cómo se llenó el tranque

	i abia 1			
corte	Toneladas	CuT	Cus	Mo
0.00	360,480,132	0.265	0.099	0.021
0.05	360,480,132	0.265	0.099	0.021
0.10	360,480,132	0.265	0.099	0.021
0.15	360,480,132	0.265	0.099	0.021
0.20	346,181,320	0.268	0.100	0.021
0.25	231,726,509	0.285	0.103	0.021
0.30	54,721,362	0.320	0.107	0.023
0.35	3,931,637	0.384	0.059	0.027
0.40	930,387	0.423	0.042	0.027


Table 1

Molibdeno

Clasificación (categorización) de los recursos utilizando el error relativo



No se puede planificar la explotación incluyendo zonas inferidas (códigos RR y RR)

Barahona

Tabla 2: Sector A.

corte	Toneladas	CuT	CuS
0.00	4,806,432	0.268	0.056
0.05	4,743,360	0.272	0.056
0.10	4,464,288	0.284	0.059
0.15	3,949,344	0.304	0.063
0.20	3,274,560	0.331	0.068
0.25	2,604,096	0.358	0.074
0.30	2,033,856	0.381	0.078
0.35	1,514,592	0.400	0.080
0.40	734,400	0.424	0.083

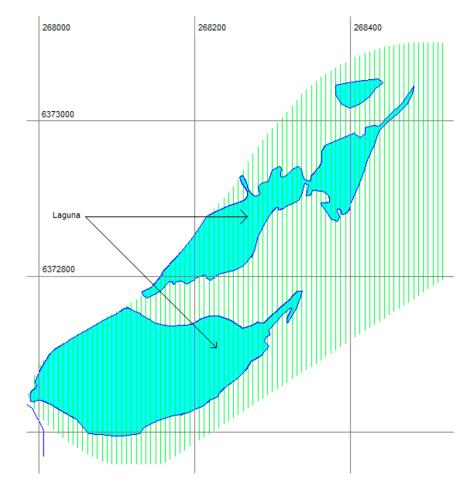
Los sondajes llegaron hasta el contacto con el agua.

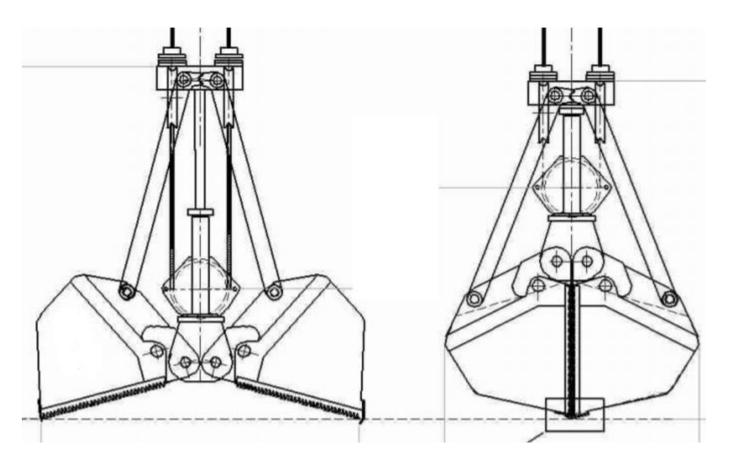
Tranque Talabre Chuquicamata

Contiene información de fracciones granulométricas

ARCHIVO CON BASEDATOS DEL TRANQUE DE TALABRE (ABRIL 1993) (61 POZOS, MUESTREADOS CADA 1M)																		
NOM. POZO	DESDE	Α	Al	IUMEDAD	Density wet	Density dry	MALLA #65	CUT #65	CUS #65	MALLA #100	CUT #100	CUS #100	MALLA #200	CUT #200	CUS #200	MALLA #-200	CUT #-200	CUS #-200
DATA BASE	DATA BASE TRANQUE TALABRES (April 1993)																	
(61 pozos muestreados cada 1 m)																		
Name drilling	From	То		Humidity	Density wet	Density dry	Mesh #65	CuT	CuS	Mesh #100	CuT	CuS	Mesh #200	CuT	CuS	Mesh #-200	CuT	CuS
	SUR	ESTE		AZIMUT			Ângle	Lenght										
D1 D1	500.7 0	15248.9	2486.2		1.04	1.65 0	-90 37	4.2 0.3	0.066	20.7	0.18	0.046	13.7	0.14	0.039	20.0	0.21	0.11
D1	1	2	- 1	8.68 13.57	1.64 1.65	1.49 1	34.8	0.3	0.068	18.7	0.18	0.046 0.071	10.2	0.14	0.039	28.6 36.2	0.21	0.11
D1	2	3	i	23.45	2.07	1.57 1	22.8	0.15	0.053	12.3	0.12	0.066	13.7	0.13	0.058	51.1	0.13	0.062
D1	3	4	i	15.46	1.89	1.46 1	35.2	0.34	0.099	14.8	0.18	0.072	11.2	0.14	0.043	38.8	0.19	0.12
D1	4	4.2	0.2	18.18	2.15	1.64 1	44.6	0.25	0.066	16.3	0.16	0.07	12	0.16	0.062	27	0.17	0.074
D2	499.1	15747.6	2485.6	0			-90	5										
D2	0	1	1	17.22	1.92	1.10 [1	20.4	0.18	0.054	11.9	0.1	0.044	19.6	0.12	0.033	48.1	0.14	0.083
D2	1	2	1	18.89	2.07	1.45 1	35.5	0.21	0.072	18.1	0.14	0.064	10.6	0.13	0.042	35.9	0.13	0.088
D2	2	3	1	21.56	1.94	1.24 1	8.7	0.18	0.063	10.5	0.094	0.049	9.5	0.08	0.027	71.2	0.14	0.095
D2 D2	3 4	4 5	1	20.35 21.58	1.95 1.87	1.13 ⁷ 1 1.06 ⁷ 1	32.1 28.6	0.18 0.53	0.051 0.078	15.7 11.9	0.1 0.2	0.043 0.066	10.3 10.2	0.084 0.14	0.022 0.031	42 49.2	0.1 0.14	0.065 0.083

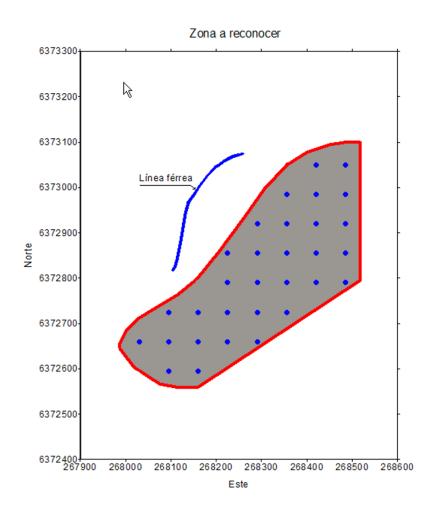
El escorial de Ventanas

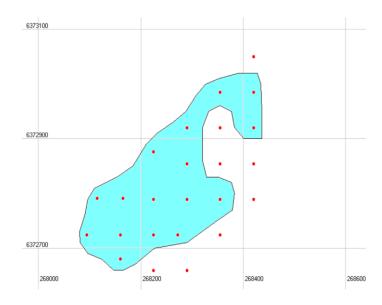

Minera Tocopilla versus ENAMI



patos

Laguna

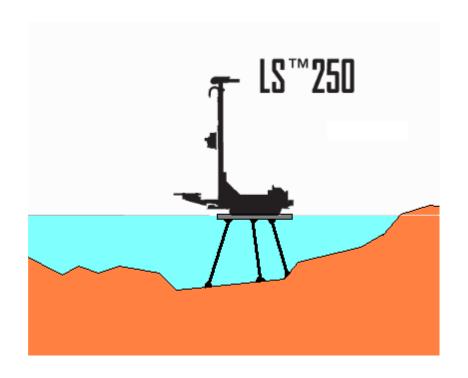

Explotación


ALMEJA

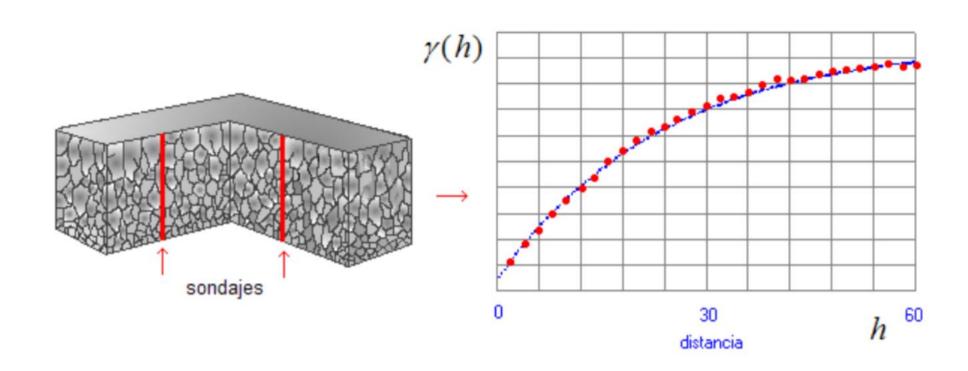
Problema: Determinar las toneladas y la ley de las escorias de reverbero que quedan en el escorial

Mallas de reconocimiento

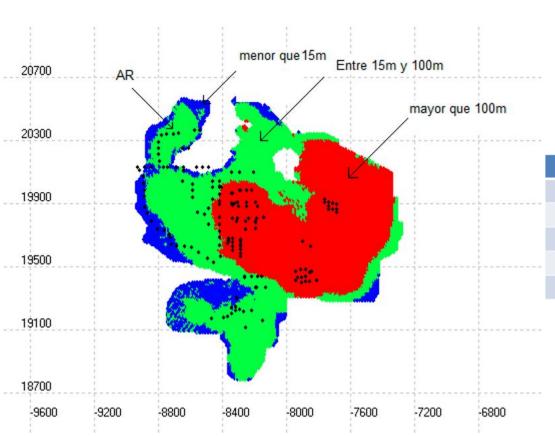
Dos unidades Escoria de horno de reverbero (3%CuT) Escoria de horno eléctrico (0.1%CuT)

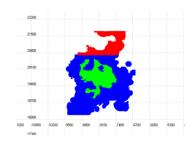

boartlongyear

Sondajes sónicos



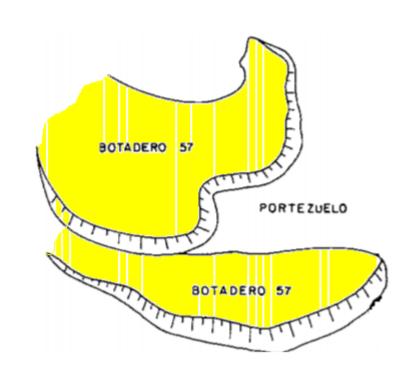
Casi un testigo




Balsa con 3 patas

El material quebrado en una mina explotada por block caving

Rajo Inca (Salvador) Material Quebrado



Año	Ley media <u>CuT</u> (%)	Error relativo (%)	Número de bloques
2021	0.54	14.8	4475
2022	0.59	5.5	4680
2023	0.69	6.9	6120
2024	0.61	5.7	7234
2025	0.58	5.4	13120

Cuadro Histórico Si hay tiempo correr programa caving

¡Me faltó el botadero 57!

Conclusiones y Recomendaciones

La importancia de los recursos y reservas de los depósitos es y será cada vez de mayor importancia en la minería chilena y extranjera, tal como muestran las cifras que se ven en este trabajo.

Algunas cifras han sido cambiadas por razones de discreción minera La mayoría de los cálculos se han realizado con el software de uso gratis:

igracias!