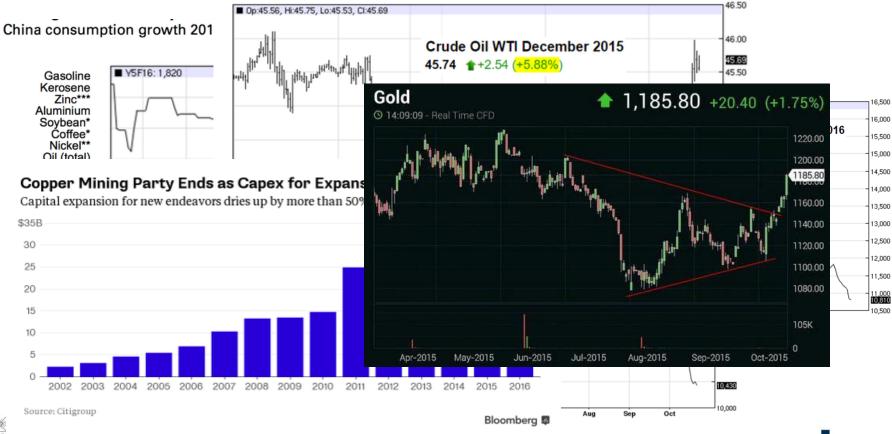
¿Qué es la planificación bajo incertidumbre?


Nelson Morales

Director Laboratorio de Planificación Delphos
DIMIN & AMTC
Universidad de Chile

¿Cuánto vale un bloque?

Recuperación

Precio Ley Tonelaje Costos
$$B = (P - C_V) \cdot R \cdot g \cdot F \cdot T - (C_M + C_P) \cdot T$$

Costo Venta

Factor Ton/lb

Tonelaje

En rojo, los valores que conocemos con certeza.

¿Por qué considerar la incertidumbre?

- Los promedios tienen probabilidad de ocurrencia CERO.
- Es mejor estar
 aproximadamente en lo
 correcto que precisamente
 equivocado.
- Al considerar la incertidumbre, nuestra mejor decisión para hoy es diferente.

Mini-Ejemplo

- Debemos decidir x (cuánto producir), pero D (la demanda) es incierta.
- Sabemos los costos:
 - C(x) de prod. (USD 100/u)
 - -B(x-D) de no cumplir (USD 1,000/u)
 - H(D-x) de almacenar (USD 10/u).

Costo Total es

$$G(x,D) = C(x) + B(x-D) + H(D-x)$$

Distribución de la demanda es

$$D \sim N(50, 10)$$

Mini-Ejemplo (cont.)

Produzcamos lo esperado: 50

SIM	D	G
1	60	14.590
2	37	5.131
3	19	5.311
4	60	14.952
5	46	5.040
6	55	9.775
7	51	6.247
8	40	5.099
9	54	9.020
100	60	14.663

С	100
b	1000
h	10

¿Hay que producir más, pero cuanto?

- Es peor quedar corto (pago 1000) que pasado (pago 10).
- En este caso, el óptimo es x = 62

С	100	
b	1.000	
h	10	

G PROMEDIO

Las *tres* fuentes de incertidumbre

Fuentes

- Geología
 - Leyes
 - Mineralogías
- Mercado
 - Precio y Costos
- Operación
 - Equipos
 - Costos
 - Clima

Tipos

- Endógena:
 - Originada "por nosotros mismos"

- Exógena:
 - Dada por las condiciones externas.

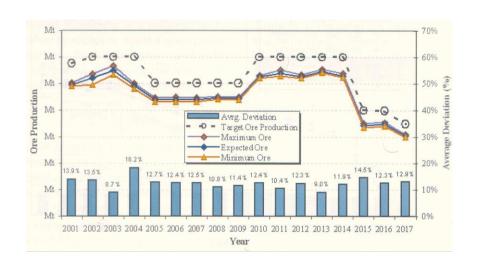
¿Cómo planeamos? *Tres* niveles

UN PLAN

Hacemos un "análisis de riesgo"

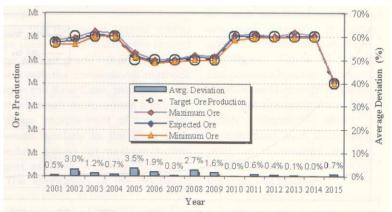
Consideramos la incertidumbre en EL PLAN Diseñamos un plan con flexibilidades

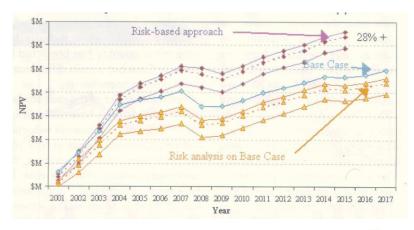
UNA ESTRATEGIA (CONJUNTO DE PLANES)



Análisis de Riesgo

 Base utilizando un modelo tradicional: Se estima una variabilidad de hasta 1,3 MTon por año, mostrando repercusiones en la planta metalúrgica.

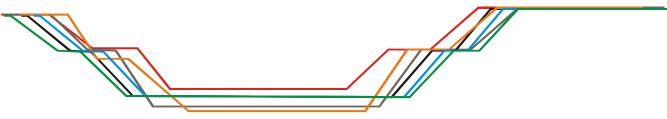




Plan considerando incertidumbre

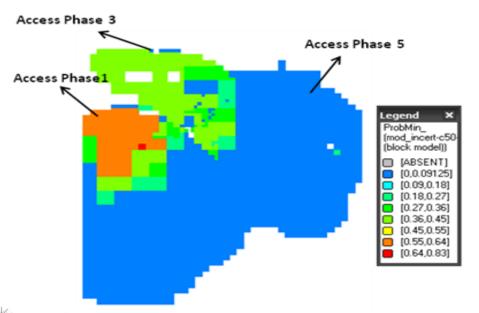
 Análisis de riesgo del caso base, utilizando una serie de modelos de bloques: Se estimauna variabilidad de hasta 0,4 MTon por año

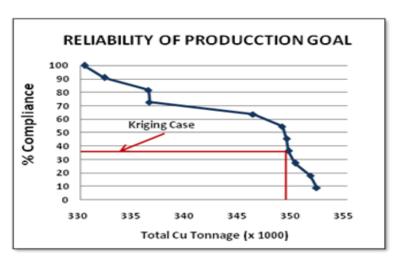
• Incertidumbre en VAN: Modelo tradicional versus análisis de riesgo



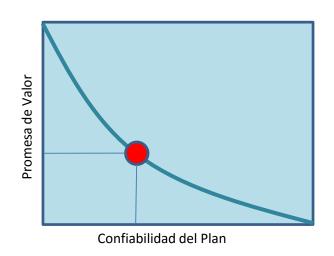
Fit final "confiable"

- Considerar varios modelos de bloques equiprobables de las simulaciones
- Optimizar con algún método
- La intersección de ellos entrega una confiabilidad de un 100% de los recursos contenidos en la envolvente





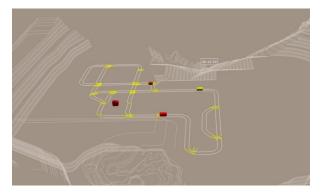
Mapas de probabilidad y confiabilidad de la producción

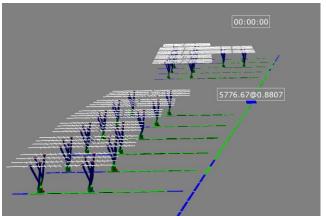


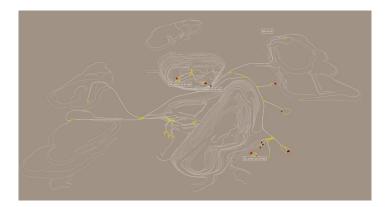
Un plan → Tradeoff

- En la medida de que construimos planes (rígidos) más confiables, esta robustez se paga con valor (ej. caída en el VAN Esperado).
- ¿Por qué hacer un plan (rígido) cuando sabemos que vamos a cambiarlo en el futuro?

Incertidumbre Operacional


- "Al final, cuando revisamos por qué no se cumplen los planes, siempre es porque falló algún equipo"
- La complejidad de las operaciones crece en el tiempo
 - Rajos más profundos: ¿Cómo optimizar la operación con 300 camiones? ¿Se puede?


- ¿Qué hacer frente a eventos de nieve? ¿Un alud?
- ¿Cómo afecta la incorporación de tecnología (ej. autónoma) la producción y los costos?
- ¿Se puede controlar el riesgo de un colapso y maximizar el VAN, al mismo tiempo?



Simulación para comprender el sistema y proyectar decisiones de corto plazo en largo plazo. Interacción entre modelos de optimización (asignación) y simulación.

Plan con flexibilidades

Objetivo

- Definir estrategias:
 - Dimensionar coberturas
 - Dejar abiertas alternativas
- Generar una evaluación del proyecto más precisa:
 - Potencialmente más alta
 - Con menor riesgo/varianza.

Ejemplos

- Opciones Reales
 - Pago/Inversión inicial para generar una alternativa futura.
- Programación Estocástica
 - Decisiones duras v/s
 decisiones adaptativas a los
 escenarios

Planificación Estratégica

Dollar Driven Mine Planning: The Corporate Perspective to Operational Mine Planning

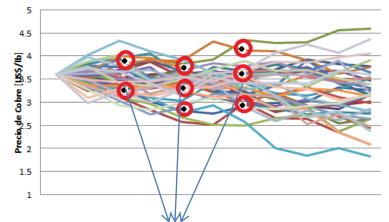
By T P Horsley 1

Strategic Planning

There are many different views and definitions of *strategic* planning. The definition I use is:

"positioning to take advantage of possible future outcomes"

These outcomes may be discrete events, such as a change in



Ejemplo 1 – Escenarios de Inversión frente a incertidumbre de precios

- Complejo minero con multiples faenas que comparten recursos (planta, transporte RRHH, budget).
- Proyectos entran en cierto orden y restricciones (x% avanzado en uno antes de poder iniciar otro)
- Horizonte de planificación > 70 años.

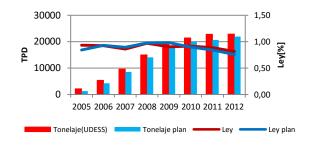
Los precios, ¿afectan las partidas? ¿Se deben ejecutar todos los proyectos? ¿cómo impacta a las reservas?

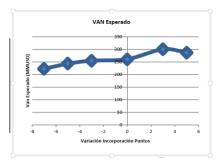
Prob (Pt > P*) : E(VAN) Opción i

Prob (Pt < P*): E(VAN) Opción i

Proyecto "4"

Caso	2033 (Decisión 2 años antes)	2034 (Decisión 1 año antes)	Requerimiento	Probabilidad de No realización de proyecto
1	Precio < 2.75	Precio < 2.75	D1 y D2	35%
2	Precio < 3	Precio < 3	D1 y D2	25%
3	Precio < 2.75	Precio < 2.75	D2	31%
4	Precio < 3	Precio < 3	D2	21%




Ejemplo 2 – Opciones frente a incertidumbre Operacional

- Mina subterránea, incertidumbre operacional (disponibilidad de puntos de extracción).
- ¿Cuánta área preparar para cubrirse? ¿Cuál es la flota de equipos asociada?

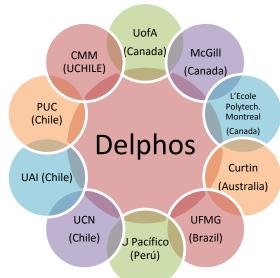
Plan de producción(UDESS)/ Planificado

Delta Pts.	VAN
-7	223
-5	243
-3	255
0	261
3	300
5	287

... Finalmente...

¿Qué es la planificación bajo incertidumbre?

- Consiste en mejorar nuestras decisiones presentes incorporando apropiadamente la variabilidad futura.
- En realidad... es la única que existe...
- ... pero
 - Hay herramientas que permiten incorporarla a la planificación y
 - Optimizar o generar coberturas.


Delphos

Gente

UNIVERSIDAD DE CHILE

- Maximiliano Alarcón, Ing. Minas
- Alejandro Ehrenfeld, Ing. Eléctrico
- Nelson Espejo, Ing. Matemático
- Diego Mancilla, Ing. Matemático (MSc)
- Fabián Manríquez , Ing. Minas (MSc)
- Gerson Morales, Ing. Ingformática
- Nelson Morales, Ing. Matemático (PhD)
- Pierre Nancel, Ing. Matemático (PhD)
- Andrés Parra , Ing. Minas (MSc)
- Consuelo Moreno, Ing. Matemático
- Emilio Vargas , Ing. Minas (MSc)

Colaboradores

¿Qué es la planificación bajo incertidumbre?

Nelson Morales

Director Laboratorio de Planificación Delphos
DIMIN & AMTC
Universidad de Chile

