

TALLER REPORTABILIDAD DE PROCESOS METALURGICOS Comisión Minera

Procesos metalúrgicos en la estimación de reservas de minerales de hierro

Luis Bernal Consultor Senior de Procesos Process Minerals Consulting

6 de abril 2022

Contenido

- 1. Capítulos de Procesos en Informes NI 43-101
- 2. Minerales de Fe de importancia económica
- 3. Pruebas metalúrgicas minerales de Fe
 - Preparación de muestras
 - Análisis químicos, Mineralogía
 - Test DTT
 - Pruebas laboratorio y piloto
- 4. Métodos de recuperación
 - Flowsheet en estudios NI 43-101
 - 3 casos a analizar
- 5. Reporte de Capex-Opex versus precio de venta

- Procesamiento de minerales y pruebas metalúrgica: análisis de diferentes métodos de procesamiento
- Métodos de recuperación: descripción del flowsheet y planta de procesos
- Capex y Opex: definición equipos principales de proceso y cálculo del Opex de la planta

Table of contents

1 Sum	ımary
1.1	Introduction15
1.2	Property Description and Ownership15
1.3	History16
1.4	Geology and Mineralization16
1.5	Mineral Processing and Metallurgical Testing18
1.6	Mineral Resource Estimate21
1.7	Mineral Reserve Estimate
1.8	Mining Methods23
1.9	Recovery Methods24
1.10	Project Infrastructures25
1.11	Market Studies and Pricing
1.12	Environment Studies, Permitting and Social or Community Impact
1.13	Capital and Operating Costs27
1.14	Economic Analysis
1.15	Recommendations30
	1.15.1 Geology
	1.15.2 Mining
	1.15.3 Metallurgy
	1.15.4 Infrastructures

Procesamiento de minerales y pruebas metalúrgica:

- Preparación muestras
- Análisis químicos y Mineralogia
- Test de conminución
- Test Tubo Davis
- Test separación magnética LIMS, MIMS
- Test separación alta intensidad WHIMS
- Test separación gravitacional (espirales, mesas, medio denso)
- Test flotación directa hematita
- Test flotación inversa magnetita/hematita
- Modelo Fe vs SiO2
- Especificación del concentrado final (pellets feed, pellets)
- Modelo de recuperación RP (rec. rn peso de concentrado), RM (rec. metalúrgica de Fe) y RMM (rec. Fe magnético)

	ineral Processing and Metallurgical Testing	Min	13
	.1 Metallurgical Testwork Program (2014)	13.1	
	13.1.1 Sample Description and Preparation		
	13.1.2 Chemical Analysis		
	13.1.3 Mineralogical Analysis		
	13.1.4 Grindability Testwork		
	13.1.5 Heavy Liquid Separation Test (HLS)		
1	13.1.6 Davis Tube Test (DTT)		
1	13.1.7 Wilfley Table Tests		
1	2 Heavy Liquid Separation Test (2014)	13.2	
1	3 Fe vs. SiO₂ Grade Model Development	13.3	
	.4 Concentrate Specifications		
1	.5 Weight Recovery Model	13.5	

- Método de recuperación:
- Benchmarking
- Criterio de diseño
- Diagrama de flujo
- Descripción del proceso
- Selección equipos principales
- Estudios de casos base diferentes producciones
- Análisis de riesgo/oportunidades

 overy Methods	Re
 Similar Operations	17.
 Process Design Criteria	17.
 17.2.1 Hypotheses and Requirements	
 17.2.2 Symbols and Units	
 17.2.3 Equipment Design Guidelines	
 17.2.4 Design Criteria	
 Process Flowsheet	17.
 Process Description	17.
 Major Process Equipment Selection	17.
 5.5 MTPY Case Study	17.
QPyrxM Processing Opportunity	17.

Calculo de Opex Concentrador:

- Por Operación unitaria
 - Chancado
 - Molienda
 - Concentración gravitacional
 - Separación magnética
 - Flotación impurezas
 - Espesamiento/filtración concentrado
 - Espesamiento relaves

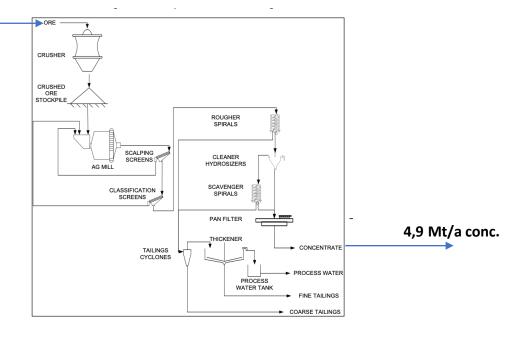
Por ítem de gasto

- Personal
- Energia
- Consumibles
- Mantención
- Servicios/Subcontratos

Nota:

 Costo se calcula en USD/t mineral procesado y luego se transforma a USD/t concentrado, cáculo que es función de la RP

USD/t concentrado = (USD/t mineral)/ RP x 100


En este ejemplo la RP es 36 %

■ Luego se reporta en kUSD/año

Referencia: Ni 43-101 Technical Report on the Preliminary Economic Assessment (PEA) for the Lamêlée Project, Dic. 2014

Area	Annual Cost	Unit Cost	
	\$'000	\$/tonne Mineralization	\$/tonne Conc.
Mining	108 046	7.95	21.92
Concentrating	32 464	2.39	6.59
Tailings	8 131	0.60	1.65
General and Administration	34 714	2.55	7.04
Rail Transportation	56 379	4.15	11.43
Port Handling	30 454	2.24	6.18
TOTAL	270 188	19.88	54.81

13,6Mt/a mineral

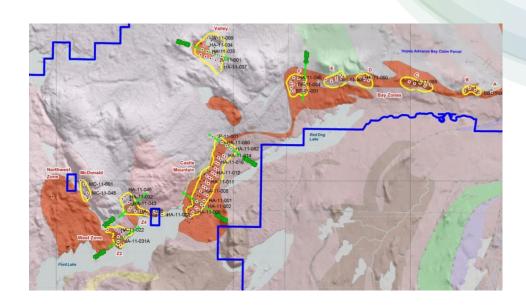
Minerales de Fe de importancia económica

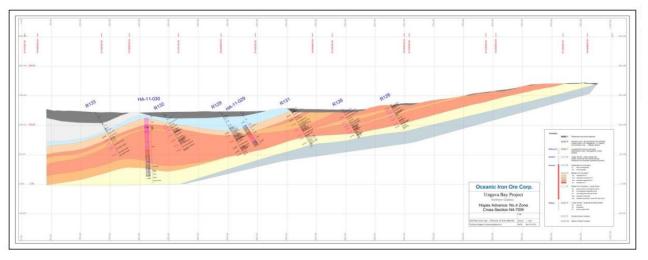
El hierro es el metal pesado más extenso y más abundante en la superficie de la tierra. Por su avidez por el oxigeno generalmente se encuentra oxidado, pero se encuentra también en silicatos y súlfuros.

Minerales óxidos de Fe	Fórmula	Densidad	Propiedades Ley	/ Fe
Hematita	Fe2O3	5,27	Débil% magnética 69%	%
Magnetita	Fe304	5,175	Alta% Magnético 72%	%
Limonita (Goethita)	Fe2 O3 .nH2 O	3,6-4,4	débil%-mag. arcilloso 58,	,7%
Siderita	FeCO3	4,0	No magnético 58,	,3%
Taconita	Fe3O4*SiO2	4,5	Altamente magnética 25-	-40%
Martita (hibrido mag-hem)	Fe2O3*Fe3O4	5,2	Semi-magnética 70%	%

Hematita

Limonita


Siderita

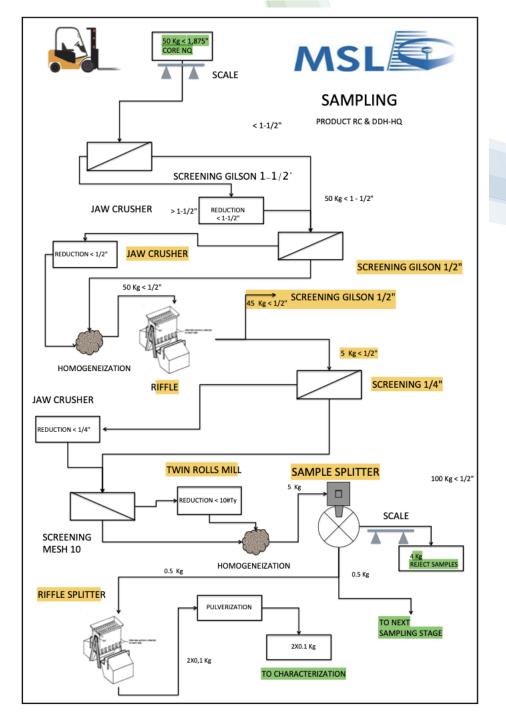

Pruebas metalúrgicas minerales de Fe

Preparación de muestras

- Definición de zonas mineralizadas por geología
- Definición de unidades geo-metalúrgicas
- Muestras de tramos sondajes diamantinos 1,5"-2", 15m-20m
- Muestras especiales sondajes metalúrgicos de 3,5"
- Muestras de túneles para pilotaje
- Análisis químicos completo ICP, WRA
 - AA (absorción atómica) para elementos principales
 - ICP (Inductively Coupled Plasma) para elementos trazas
 - WRA (Whole rock analysis by XRF) para compuestos:
 Al2O3, CaO, Cr2O3, K2O, MgO, MnO, Na2O, P2O5, Fe2O3, SiO2, TiO2, LOI
- Mineralogía
 - Microscopía óptica prioritaria inicialmente para identificación de especies
 - Qemscan o Tescan microscopia electrónica MA y PMA (Particle minerals analysis) para determinar grado de liberación, asociaciones, e impurezas

Pruebas metalúrgicas minerales de Fe

Preparación de muestras test laboratorio


Objetivo: screening de tecnología

- Utilización sondajes p.ej 15-20m de 1,5" diámetro, aprox. 50 kg
- Reducción de tamaño hasta ½"
- Homogenización y generación paquetes de 0,5 kg-4,0 kg
 - o Test WI, SPI, Abrasión
 - o Test LIMS, MIMS, Flotación, concentrado de espirales, deslamador
- Pulverización de sub-muestra para caracterización
 - AQ, Mineralogía, densidad
 - Test DTT (Tubo Davis)
- Muestras especiales sondajes metalúrgicos de 3,5"

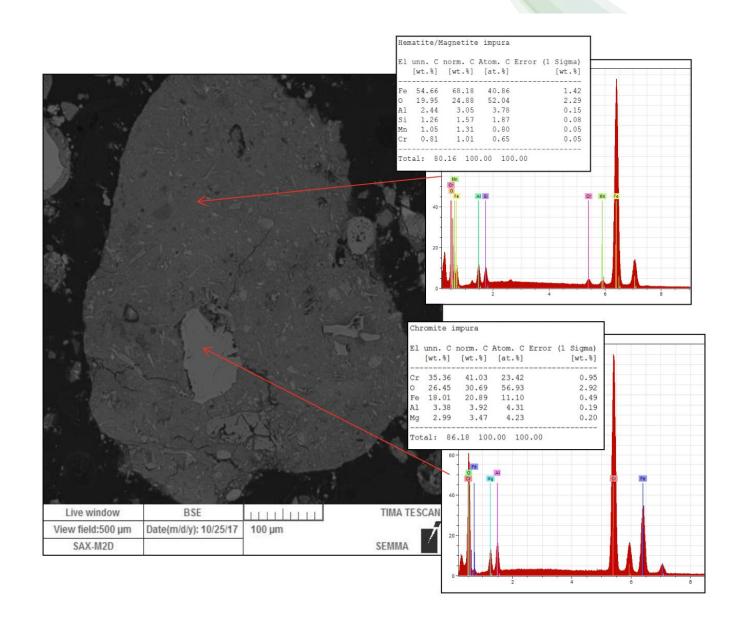
Muestras para Test Planta Piloto

Objetivo: Prueba tecnología seleccionada, test de conminución SAG o HPGR

- Opción 1 compósito sondajes metalúrgicos, 1-5 ton
- Opción 2 muestras de túnel de exploración, 5 a 20 ton

Pruebas metalúrgicas minerales de Fe

Análisis químico y mineralógico TESCAN (QEMSCAN)


- Relaves de Fe provenientes de proceso Ni-Co
- Estudio de elementos trazas en matriz de magnetita- hematita
- Análisis de tamaño de cuarzo (SiO2)

A-2.- ANÁLISIS ELEMENTAL (Calculado)

Element / Mass [%]	M2
Fe	55.54
0	27.39
Si	5.94
Mg	4.48
Al	2.85
Cr	2.83
Mn	0.65
Ni	0.29
Ca	0.01
С	0.00
Ti	0.00
Na	0.00
S	0.00
Cu	0.00
K	0.00
Nb	0.00
Н	0.00
Та	0.00
Unspecified	0.00
Total	100

A-1.- MINERALOGÍA MODAL

Primary phases / Mass [%]	M2
Hematite/Magnetite impura	61.43
Hematite/Magnetite	23.429
Protoanthophyllite	7.709
Chromite impura	3.304
FeSi transition class	2.303
Majorite	0.686
Quartz	0.549
Olivine	0.381
Chromferide	0.071
Garnet - Pyrope	0.07
Calcite	0.019
Kaersutite	0.017
Augite	0.008
Chlorite - Clinochlore	0.007
Plagioclase	0.006
Albite	0.004
Ilmenite	0.002
Wollastonite	0.001
Orthoclase	0.001
Dolomite	0.001
Pyrite	0.001
Muscovite	0.001
The rest	0.002
Total	100

Test de Tubo Davis (DTT) minerales de Fe

Determinación de Fe magnético

- No existe un análisis químico de Fe magnético
- Existe un análisis indirecto mediante determinación del contenido de FeO basado en: Fe3O4= FeO*Fe2o3
- Se utilizan varios métodos físicos como por ejemplo la balanza Satmagan
- Sin embargo el método mas utilizado y estandarizado es el test DTT:
 - Muestra molida 60% 90%-325# (45 um), 20 gr
 - Se introduce en un tubo con un campo magnético exterior de 4.000 Gauss
 - Se ingresa un flujo de agua de lavado
 - o Tubo se agita en forma lineal y además se rota
 - Se obtiene un concentrado de magnetita que se pesa y se determina la RP (conc/alim x100)
 - Se mide la ley de Fe total o FeDTT y las impurezas
 - La ley de Femag= RP x FeDTT
- Mediante este test se determina el tamaño de molienda óptimo para el proceso de separación magnética, para obtener un producto comercial >65% Fe

Figure 13.10 - Fe Grade in Concentrate Fraction - DTT

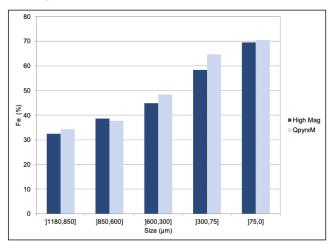
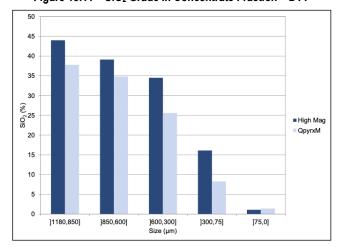



Figure 13.11 – SiO₂ Grade in Concentrate Fraction – DTT

Test separación magnética LIMS- MIMS-WHGMS de minerales de Fe

Determinación de RM y RMM de mineral de Fe

- LIMS (Low intesity magnetic separator): separador magnético de baja intensidad 800-1.000 gauss
- MIMS (Medium intesity magnetic separator): separador magnético de media intensidad 800-1.000 gauss
- WHIMS o WHGMS (Wet high intensity magnetic separator): separador de alta intensidad 10.000-12.000 gauss

Separador WHGMS 500mmx400mm 50-100 kg/h Recuperación hematita y débil% magnético

Alimentación

Fet_a

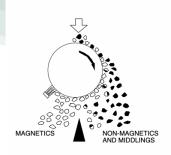
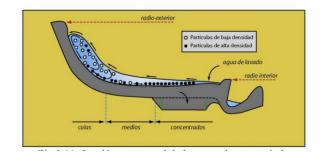
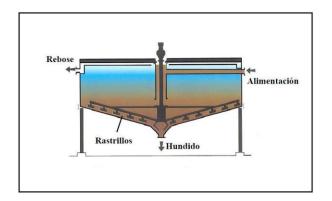
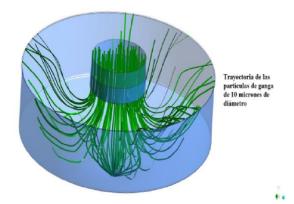
Concentrado

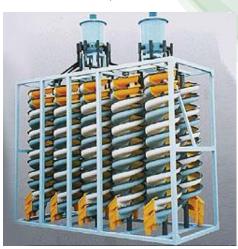
Fet_c Femag_c

RP= peso conc./peso alim.x100 RM= RPxFet_c /Fet_a RMM= RPxFemag_c / Femag_a

Test LIMS en seco y separación gravitacional de minerales de Fe

- Separador magnético en seco: separador magnético de baja intensidad 800-1.000 gauss, preconcentración de magnetita
- Hidroseparador: deslamado de magnetita
- Concentrador de espiral: preconcentración hematita


Figure 1. Operating Principle of DF Drum Separator

Los materiales se separan a través de la estratificación gracias a la fuerza centrífuga, el asentamiento diferencial y la migración de partículas pesadas a través del lecho y dentro de la parte interior del conducto.

Flotación inversa de minerales de Fe

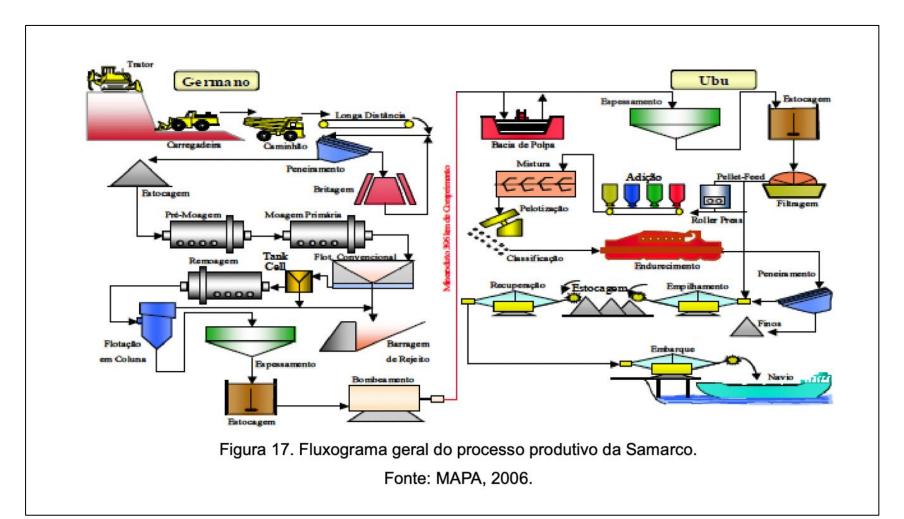
- Concentración de minerales de hematita
- Limpieza de concentrados de magnetita
- Flotación celdas convencionales: celdas con inyección de aire y agitación
- Flotación celdas neumáticas: celdas con eductor (Downcomer) de aire para generación de micro burbujas sin agitador
- Reactivos de flotación:
 - Mono-aminas flotación SiO2
 - Di-aminas flotación SiO2
 - Acido oleico flotación fósforo (P)
 - Xantato flotación súlfuro (S)
 - Almidón, CMC depresantes de Fe
 - Espumante

Concentrado de SiO2 (relave)

Fet,

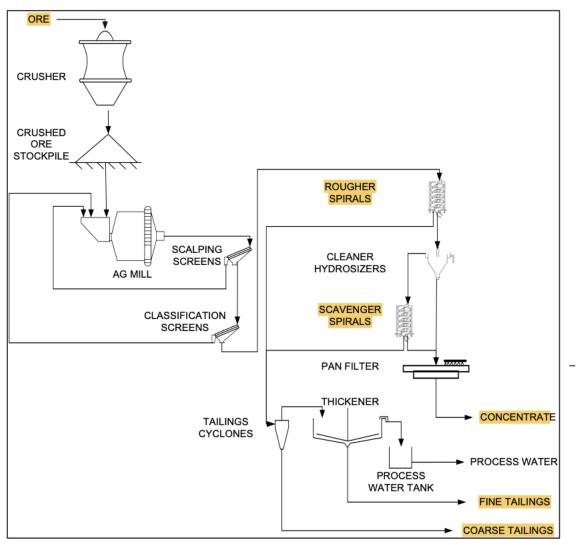
Alimentación

Relave (Concentrado de Fe)


Fet_c

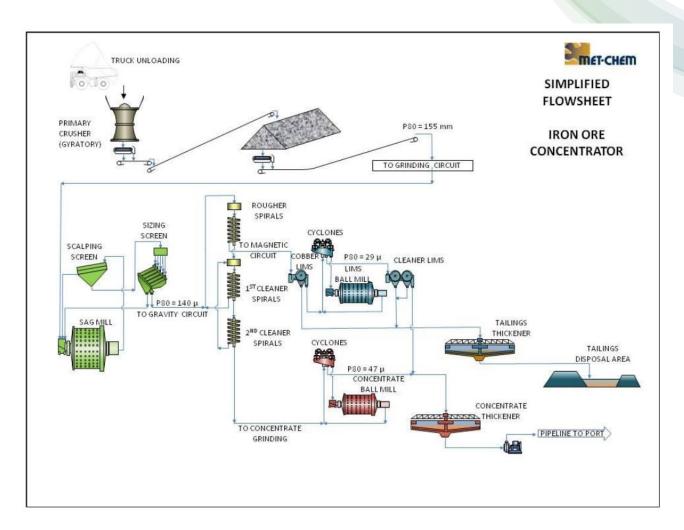
Flotación inversa de minerales de Fe

Planta Samarco producción >10 Mt/año


- Mineral hematita/goethita
- Molienda primaria 200 um en dos etapas
- Flotación inversa SiO2- silicatos etapa rougher en celda convencional
- Remolienda 40 um
- Etapas intermedias de deslamado
- Flotación limpieza en columna
- Espesamiento y filtrado concentrado

Métodos de recuperación-Flowsheet para minerales de Fe

- Mineral mixto de hematita/magnetita
- Procesamiento 13,6 Mt/a mineral
- Producción 4,9 Mt/a concentrado
- Molienda 100%-850 um (20 #)
- Concentración gravitacional mediante espirales
- Producto concentrado
 - o 64,3% Fe
 - 4,5% SiO2



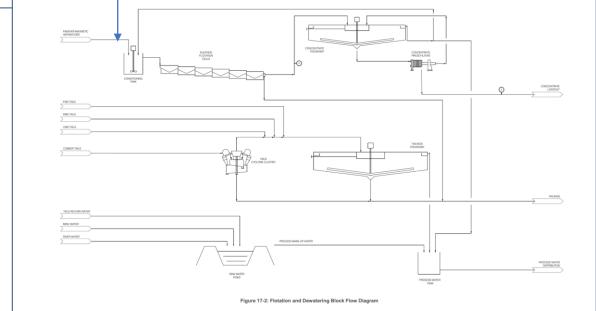
Ni 43-101 Technical Report on the Preliminary Economic Assessment (PEA) for the Lamêlée Project, Dic. 2014

Métodos de recuperación-Flowsheet para minerales de Fe

- Mineral mixto de hematita/magnetita
- Procesamiento 26,6 Mt/a mineral
- Producción 10 Mt/a concentrado
 - 8,4 Mt/a espirales
 - o 1,6 Mt/a sep. magnéticos
- Molienda primaria 140 um
- Remolienda P80 47 um (325#)
- Concentración gravitacional espirales
- Concentración magnética LIMS
- Producto concentrado espirales
 - o 66,6% Fe
 - o 4,5% SiO2
- Producto concentrado magnético
 - o 68,4% Fe
 - o 3,9% SiO2

OCEANIC IRON ORE CORP. NI 43-101 TECHNICAL REPORT ON A PREFEASIBILITY STUDY

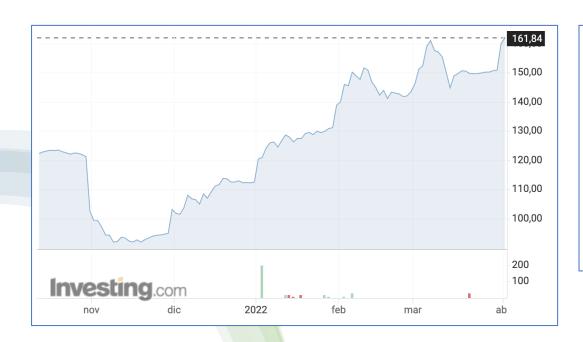
Métodos de recuperación-Flowsheet para minerales de Fe


Process Minerals Consulting

Planta separación magnética

- Mineral de magnetita
- Procesamiento 14,3 Mt/a mineral
- Producción 4,0 Mt/a concentrado
- Molienda primaria 180 um
- Remolienda P80 32 um (400 #)
- Concentración magnética LIMS
- Flotación inversa de azufre (S) contaminante
- Producto concentrado
 - o 68,0% Fe
 - 4,5% SiO2

Planta flotación inversa de S (sulfuro)



NI-43-101 Preliminary Economic Assesment Shymanivske Iron Ore Deposit

Reporte Capex-Opex de proyectos minerales de Fe

Proyecto	Producción Mt/año conc.	Capex total MUSD	Capex USD/tpd	Opex USD/t concentrado
1 Lamelee	4,9	817	60.800	54,8
2 Oceanic Iron	10,0	2.850	104.000	30,2
3 Shymanivke	4,0	436	40.000	31,5

Precio de los concentrados pellet feed con 68% Fe (premium)

- Precios Platts precio estándar o de referencia a nivel mundial para concentrado con 62% Fe
- Según estadística adjunta precio actual
 161,8USD/t
- Premio VIU sobre 65% 1,5 USD/t por cada 1% 4,5 Concentrado Premium por contrato (2-8 USD/t). 6,0
- Precio final (2-8 USD/t). 6,0

 172,3 USD/t
- Precio Platts a futuro para evaluación
 80-90 USD/t

• Muchas gracias por su atención

• Preguntas?

Luis Bernal